FSU researchers develop new method to produce next-gen LED
A Florida State University research team has developed a method to create red-emitting LEDs, or light-emitting diodes, with next-generation materials.
Professor of Chemistry and Biochemistry Biwu Ma and other FSU researchers published their work in the scientific journal Advanced Materials.
Ma and his team engineered a small molecular change to address the low conductivity of zero-dimensional (0D) organic metal halide hybrids — compounds made of metal and halogen — and produced a new material that emits highly efficient red light.
When LEDs use this hybrid material as an emitting layer, it has an external quantum efficiency of 5%. Quantum efficiency is how effectively devices convert the energy of electrons into photons, ultimately creating a visible light. Other organic LEDs have rates at about 20%, but the FSU team’s work is among the best value reported to date for electroluminescent devices based on this class of hybrid materials.
Electrically driven LEDs, or electroluminescent devices, have a wide range of applications, from full-color displays to solid-state lighting. Scientists and engineers have developed various types over the past few decades, including LEDs based on inorganic semiconductors, organic LEDs (OLEDs), quantum dot-based LEDs (QDLEDs), and more recently, LEDs based on metal halide perovskites (PeLEDs).
Professor of Chemistry and Biochemistry Biwu Ma and other FSU researchers published their work in the scientific journal Advanced Materials.
Ma and his team engineered a small molecular change to address the low conductivity of zero-dimensional (0D) organic metal halide hybrids — compounds made of metal and halogen — and produced a new material that emits highly efficient red light.
When LEDs use this hybrid material as an emitting layer, it has an external quantum efficiency of 5%. Quantum efficiency is how effectively devices convert the energy of electrons into photons, ultimately creating a visible light. Other organic LEDs have rates at about 20%, but the FSU team’s work is among the best value reported to date for electroluminescent devices based on this class of hybrid materials.
Electrically driven LEDs, or electroluminescent devices, have a wide range of applications, from full-color displays to solid-state lighting. Scientists and engineers have developed various types over the past few decades, including LEDs based on inorganic semiconductors, organic LEDs (OLEDs), quantum dot-based LEDs (QDLEDs), and more recently, LEDs based on metal halide perovskites (PeLEDs).
No comments: