Newly developed technique to improve quantum dots color conversion performance
Quantum dots color conversion (QDCC) has become a foundational technology in the design of full-color light-emitting devices with dramatically improved color performance. However, conventional QDCC pixels fabricated by inkjet printing are still too thin to achieve efficient color conversion.
A research team has developed perovskite quantum dots microarrays with strong potential for QDCC applications, including photonics integration, micro-LEDs, and near-field displays.
The researchers’ results further confirm the realization of high-quality multicolor microarrays through the inject printing approach. Looking ahead, the team sees potential applications for their work. They are confident that this technique paves the way for the further fabrication of full-color QDCC micro-LED displays. “The in situ direct print photopolymerization technique allows for precise control of the pixel structure, removing the aggregation of QDs and coffee-ring effects in microarrays, which will aid in their expansion in photonics integration, full-color display, on-chip biomedical diagnostics, and next-generation augmented reality and virtual reality devices,” said Yang.
T
he research team includes Xiu Liu, Jianjun Li, and Yuejin Zhao from the School of Optics and Photonics, Beijing Institute of Technology; and Pingping Zhang, Weitong Lu, and Haizheng Zhong from the MIIT Key Laboratory for Low Dimensional Quantum Structure and Devices, School of Materials Sciences & Engineering, Beijing Institute of Technology; and Gaoling Yang who works at both the Beijing Institute of Technology and the MIIT Key Laboratory.
A research team has developed perovskite quantum dots microarrays with strong potential for QDCC applications, including photonics integration, micro-LEDs, and near-field displays.
The researchers’ results further confirm the realization of high-quality multicolor microarrays through the inject printing approach. Looking ahead, the team sees potential applications for their work. They are confident that this technique paves the way for the further fabrication of full-color QDCC micro-LED displays. “The in situ direct print photopolymerization technique allows for precise control of the pixel structure, removing the aggregation of QDs and coffee-ring effects in microarrays, which will aid in their expansion in photonics integration, full-color display, on-chip biomedical diagnostics, and next-generation augmented reality and virtual reality devices,” said Yang.
T
he research team includes Xiu Liu, Jianjun Li, and Yuejin Zhao from the School of Optics and Photonics, Beijing Institute of Technology; and Pingping Zhang, Weitong Lu, and Haizheng Zhong from the MIIT Key Laboratory for Low Dimensional Quantum Structure and Devices, School of Materials Sciences & Engineering, Beijing Institute of Technology; and Gaoling Yang who works at both the Beijing Institute of Technology and the MIIT Key Laboratory.
No comments: